
Cisco Smart+Connected Digital Platform is a platform providing rich API for retrieving information from
connected cities and device collections including sensor data, users, locations and capabilites. The API
provides access to real time and historical data from the connected sensors and devices.

All Smart+Connected Digital Platform APIs (except authentication) require access tokens. Before any of these
APIs can be used, you must authenticate with the Smart+Connected Digital Platform API to get the tokens
needed to make successful calls.

All Smart+Connected Digital Platform APIs, other than authentication, are protected and require two access
tokens in order to use them and retrieve data. These tokens are:

1. api_access_token
2. app_access_token

Application developers integrating with the Smart+Connected Digital Platform must register their app via the
Cisco Smart+Connected Digital Platform Developers portal. During registration, the system generates a
Client ID and Client Secret pair, which are later used by the application to access the Smart+Connected
Digital Platform authentication service. During this exercise, you use the provided Client ID and Secret, along
with the provided Smart+Connected Digital Platform username and password, to authenticate and make an
additional Smart+Connected Digital Platform API Request.

In this document, we will examine a small sample Python script that demonstrates how to perform
Smart+Connected Digital Platform API authentication and make additional API calls. We'll walk through
some of the key concepts and code details and use the access tokens returned by the authentiction call to
make additional Smart+Connected Digital Platform API requests.

If you have Python 3 installed on your computer, you can try the code there as we go along.

Smart+Connected Digital Platform API Overview -
Authentication and API Access using Python
Overview

Smart+Connected Digital Platform API Requirements

Main Steps

http://www.cisco.com/c/en/us/solutions/industries/smart-connected-communities.html

We will make several API requests to get different types of data from the Smart+Connected Digital Platform
APIs. Before we can make any API calls to retrieve data, we need to authenticate with the Smart+Connected
Digital Platform to get the access tokens. Next, we will make another call to get account information for the
current user. This will return two ids (user id and customer id) we will then use to make two more requests.

1. Authenticate

Authenticate using the /login Smart+Connected Digital Platform API by making a POST Request
and submitting the required data in the post body
Parse the response to get the two tokens needed for all other API requests

2. Retrieve User Information

Make a GET Request to the /accounts/username Smart+Connected Digital Platform API
Parse the response to get the userid and customerid for the current user. These are required by
some of the other Smart+Connected Digital Platform APIs and will be used in the last two steps.

3. Retrieve Location Information

Make a GET Request* to the locations/userinfo/user/<userId> CDSmart+Connected Digital
PlatformP API

4. Retrieve Smart+Connected Digital Platform Capabilities Information

Make a GET Request* to the capabilities/customer/ Smart+Connected Digital Platform API

The full python script can be found here if you want to try it out.

Smart+Connected Digital Platform Authentiction URL
http://10.10.20.6/apigw/devnetlabtokenapi/login

There are five pieces of information that must be passed to the Authentication API:

1. Username (username) - This is the email address of the user logging in to the Smart+Connected Digital
Platform API

Steps

Step 1: Using the Smart+Connected Digital Platform
Authentication API to request access tokens

file:///Users/timperry/Dev/cisco/cdp-api/devnetExample/cdp-api.py

2. Password (password) - This is the password associated with the username
3. Client Secret (client_secret) - This is the shared secret used by your application
4. Client ID (client_id) - This is the unique id for your application
5. Authorization Type (grant_type) - This will be set to 'client_credentials' for Smart+Connected Digital

Platform API authentication For DevNet, these will be provided to you. For Smart+Connected Digital
Platform Deployments, these can be obtained from the Smart+Connected Digital Platform Portal

Successful authentication will return two tokens:

1. API Token (api_access_token) - This is added as a request header with the following format

'Authorization' : 'Bearer <api_access_token>'

2. APP Token (app_access_token) - This is added as a request header with the following format

'WSO2-Authorization' : 'oAuth Bearer <app_access_token>'

Both of these are required to be passed as request headers to all subsequent Smart+Connected Digital
Platform API requests.

We need to build a request, specify the post data containing the four data items and make the Rest API POST
request to Smart+Connected Digital Platform API.

The login URL is a special API that does not require access tokens. This API will return the access tokens
needed for all other requests.

The format of this API URL is https://<cdp-url>/<token-api-path>/login

For this exercise, we will use this API URL:

http://10.10.20.6/apigw/devnetlabtokenapi/login

We will use the Python urllib module for the request and json module to perform these tasks.

import urllib.parse, urllib.request, json

We will then set the post data and specify the login url. ```

Request

this dictionary contains the post body we will send

postData = { 'clientid':'51f38215eBAD4c118dcdbec86d77e574',
'clientsecret':'352de2ed6f8c4478BAD6667F0809A2E4', 'granttype':'clientcredentials' }

loginUrl = 'http://10.10.20.6/apigw/devnetlabtokenapi/login' ```

Next we will get the username and password and add it to the post data dictionary.

get username and password
username = input('Enter username (email address): ')
password = input('Enter password: ')

Add username/password to post data
postData['username'] = username;
postData['password'] = password;

Finally, we will make the request to the API. For urllib, we need to convert the dictionary to binary data to
include with the post.

Note: You don't specify POST or GET when making a request with urllib. If you include data, the request will be
a POST. If there is no data, the request will be a GET.

to the /login API

@note: these are examples and you need to
replace them with your client id and secret

this is the url we are using to authenticate with
Smart+Connected Digital Platform

urlencode the data so that symbols don't cause problems
data = urllib.parse.urlencode(postData)

use UTF-8 encoding for POST data and responses
encoding = 'UTF-8'

POST uses binary data, so encode it with the above encoding
binary_data = data.encode(encoding)

urlopen/Request with data causes a post request
request = urllib.request.Request(loginUrl, binary_data)
response = urllib.request.urlopen(request)

The response is a JSON object containing the tokens needed for subsequent API calls. We will convert the
response to a dictionary so that we can retrieve and store the tokens.

process the results and put into a JSON object/dictionary
results = response.read().decode(encoding)
responseDict = json.loads(results)

A successful login will result in the tokens being returned and available in our dictionary.

appAccessToken = responseDict['app_access_token']
apiAccessToken = responseDict['api_access_token']

Since we will need to send these tokens as request headers in all future API calls, we can create a dictionary
for our headers and store them there.

requestHeaders = {
 'WSO2-Authorization' : 'oAuth Bearer ' + appAccessToken,
 'Authorization' : 'Bearer ' + apiAccessToken
 'Accept': 'application/json'
}

Note: The added the 'Accept' header in the dictionary above. This was added to specify that we want JSON
responses from the Smart+Connected Digital Platform API. We will use all three of these headers in
subsequent Smart+Connected Digital Platform API calls.

Response

Retrieving Tokens from the Response

In this step, we will use the access tokens we retrieved in Step 1 to get additional information about the current
user including their UserId and CustomerID.

The format of this API URL is https://<cdp-url>/<api-path>/accounts/username.

For this exercise, we will use this API URL:

http://10.10.20.6/apigw/devnetlabapi/cdp/v1

This API also requires a query parameter '?loginName=<username>' to specify the account information we
want to retrieve.

Add the code below to your existing script from Step 1 to make the next request.

specify the query param
queryParams = urllib.parse.urlencode({'loginName': postData['username']})

create the request URL
requestUrl = 'http://10.10.20.6/apigw/devnetlabapi/cdp/v1' + '/accounts/username?%s'
% queryParams;

create the request
request = urllib.request.Request(requestUrl)

add headers (for API authorization)
these were retrieved from the response in Step 1
for k, v in requestHeaders.items():
 request.add_header(k, v)

perform the request
response = urllib.request.urlopen(request)

The response is a JSON object containing information about the current user. We will get two items from the
reponse, UserID and CustomerID. We will convert the response to a dictionary so that we can retrieve these
pieces of data.

Step 2: Retrieve User Information

Request

Response

process the results and put into a JSON object/dictionary
results = response.read().decode(encoding)
responseDict = json.loads(results)

The response dictionary now contains the UserID and CustomerID that we need.

userId = str(responseDict['id'])

The CustomerID is nested in another object, so we need to get that object and then get the CustomerID. In the
Smart+Connected Digital Platform Account User Information response, the CustomerID is the 'id' of the 'parent'
object in the dictionary.

parentInfo = responseDict['parentInfo']
if 'id' in parentInfo:
 customerId = str(parentInfo['id'])

In this step, we will retrieve the Location Information for the logged in user. This will return all of the
Smart+Connected Digital Platform Locations that this user has access to.

Smart+Connected Digital Platform Location URL
http://10.10.20.6/apigw/devnetlabapi/cdp/v1/locations/userinfo/user/<userId>

We need to build a new GET request that specifies they userId of the user whose location information we are
querying.

The format of this API URL is https://<cdp-url>/<token-api-path>/locations/userinfo/user/

For this step, we will use this API URL:

Retrieving UserID and CustomerID from the Response

That's it! We now have the access tokens we need for future Smart+Connected Digital Platform API
calls and the UserID and CustomerID that we will use to get more details from Smart+Connected Digital
Platform in the next two steps.

Step 3: Retrieving Location Information from the
Smart+Connected Digital Platform API

Request

http://10.10.20.6/apigw/devnetlabapi/cdp/v1/locations/userinfo/user/<userId>

Build the request and perform the GET

make sure we have a userId from Step 2
if userId:
 # build the request URL, using the actual customerId in place of <customerId>
 requestUrl = baseUrl + '/capabilities/customer/' + customerId
 print('\nGetting **CAPABILITIES** Information (' + requestUrl + ')\n');
 request = urllib.request.Request(requestUrl)
 # create the request (not adding the 2nd data param means this is a GET request)
 request = urllib.request.Request(requestUrl)

 # add headers (for API authorization)
 for k, v in requestHeaders.items():
 request.add_header(k, v)

 # perform the request
 response = urllib.request.urlopen(request)
 results = response.read().decode(encoding)

 # create a dictionary from the results
 responseDict = json.loads(results)

 # print the results
 print(results)
else:
 print("error retrieving user information. 'userId' was not present")

That's it. We now have a list of locations available to this user that we can use as needed in other
Smart+Connected Digital Platform APIs (to specify which devices to get real time data from for instance).

Next we will get information about what domains are available for from the Smart+Connected Digital Platform
for the current customer and instance

In this step, we will retrieve the Capabilities of this Smart+Connected Digital Platform instance. This will
provide us with information about the domains that are avaialble on a specific Smart+Connected Digital
Platform instance for a specific customer.

Step 4: Retrieving Capabilities Information from the
Smart+Connected Digital Platform API

Smart+Connected Digital Platform Capabilities URL
http://10.10.20.6/apigw/devnetlabapi/cdp/v1/capabilities/customer/<customerId>

We need to build a new GET request that specifies they customerId we are querying.

The format of this API URL is https://<cdp-url>/<token-api-path>/capabilities/customer/

For this step, we will use this API URL:

http://10.10.20.6/apigw/devnetlabapi/cdp/v1/capabilities/customer/<customerId>

If you have Python 3 installed on your computer, you can try the code there as we go along.

make sure we have a customerId from Step 2
if customerId:
 # build the request URL, using the actual userId in place of <userId>
 requestUrl = baseUrl + '/locations/userinfo/user/' + userId
 print('\nGetting **LOCATION** Information (' + requestUrl + ')\n');

 # create the request (not adding the 2nd data param means this is a GET request)
 request = urllib.request.Request(requestUrl)

 # add headers (for API authorization)
 for k, v in requestHeaders.items():
 request.add_header(k, v)

 # perform the request
 response = urllib.request.urlopen(request)
 results = response.read().decode(encoding)

 # create a dictionary from the results
 responseDict = json.loads(results)

 # print the results
 print(results)
else:
 print("error retrieving user information. 'customerId' was not present")

Request

That's all we need to do for that API. We now have a list of domains available for this
customer on this Smart+Connected Digital Platform instance.

