

UCS Director
3rd-Party REST
Integration Example
An Example UCSD REST Integration with Open Library

Ryan D. Criss
Network Consulting Engineer
Cisco Systems
rcriss@cisco.com

2/16/2016

mailto:rcriss@cisco.com

1 | P a g e

1 Table of Contents
2 Introduction ... 2

3 The Right Tools for the Job .. 3

3.1 A Quick Note on REST ... 3

3.2 API Guide ... 3

3.3 Using Postman .. 3

3.4 UCS Director .. 4

3.5 JavaScript Reference ... 5

4 Method to the Madness .. 5

4.1 Find the API Calls ... 5

4.2 Testing in Postman .. 6

4.3 Create the UCS Director Custom Task .. 10

4.4 Creating the Custom Task Code .. 12

4.4.1 Retrieve Name Function .. 12

4.4.2 Retrieve Details Function ... 13

4.4.3 Retrieve Author Name Function .. 14

4.4.4 Main Function .. 15

4.5 JSON Parsing Fun ... 16

4.6 Troubleshooting Your Custom Task .. 17

5 Dealing with SSL Certificates .. 17

5.1 Potential SSL Certificate Issues ... 18

5.2 Adding Certificates to the UCSD Trusted CA Keystore.. 18

6 Creating Your Own Custom Integrations ... 19

2 | P a g e

2 Introduction
While UCS Director comes with a lot of tasks and integrations out of the box, it is inevitable in your
orchestration journey that you come across an integration that doesn’t exist. When that happens, you
may be forced to turn towards the great world of Custom Tasks. At first glance, you might be a little
intimidated, especially if you haven’t touched JavaScript since college. My goal for this guide is to walk
you through a custom task integration using REST and show you the methodology, tools, and custom
task templates to help ease your fears. When you do one or two of them, you will find it’s not so bad
after all!

A majority of data center integrations with UCS Director can be tackled using APIs (REST, SOAP, XML,
PowerShell, etc.) or SSH. UCS Director can handle all of these, but for this guide I will just focus on
RESTful integrations. In the coming weeks, I will put out some additional guides around SOAP and SSH
integrations.

For this guide, we will be integrating with Open Library (http://openlibrary.org) using their RESTful API
to create a custom task that retrieves various book details when you type in a book’s ISBN-10. Why
Open Library? Because I like books, but also because it’s pretty simple and similar to a lot of other
RESTful APIs out there in the data center. If you can master Open Library, you can master any other
RESTful API with UCS Director!

Here is a quick peek at what we will be doing:

One more thing… A quick disclaimer. This guide was created based on my own experience working with
UCS Director and creating integrations over the past several years and does not represent an officially
supported Cisco integration guide. The thoughts, opinions, and methodologies represented here are my
own and not those of Cisco.

http://openlibrary.org/

3 | P a g e

3 The Right Tools for the Job
As with any project, it’s important to start off with the right tools for the job. Here are several items we
should gather before diving into our custom task work:

- API Guide for the system you are integrating with
- Credentials for the system you are integrating with (if necessary)
- Postman or other REST client for testing
- UCS Director with access to the system you are integrating with (Double check DNS and proxy

info if necessary)
- A JavaScript reference (The folks at W3Schools do an awesome job:

http://www.w3schools.com/js/)

3.1 A Quick Note on REST

I’m going to assume you have a basic understanding of what REST is in this guide, but if you are not sure
what REST is, take a quick peak at the Wikipedia definition of REST:
https://en.wikipedia.org/wiki/Representational_state_transfer

In simple terms, a RESTful API means that you send a HTTP message with some information, and the API
responds with some information you want back. Pretty simple, huh?

3.2 API Guide

How do you know how to integrate with a system if you don’t know what’s available to integrate with?
The API guide will tell us what we can actually do through the RESTful API. Before we begin, let’s take a
look through the Open Library API guide and get the lay of the land. You can find the Open Library API
guide here: https://openlibrary.org/dev/docs/restful_api

The cool thing about REST is that you can test basic REST calls in any browser. If you navigate to one of
the sample Open Library API URLs in your browser, it will return a bunch of interesting information in a
very difficult to read format. This might work great for basic testing and to just get the lay of the land,
but using a REST client like Postman will help make things easier to read and understand.

Here is a peek at what it would look like in your browser:

3.3 Using Postman

http://www.w3schools.com/js/
https://en.wikipedia.org/wiki/Representational_state_transfer
https://openlibrary.org/dev/docs/restful_api

4 | P a g e

By now you are probably getting a headache just by looking at your REST API results in your browser.
The results are formatted using a standard called JSON. We’ll touch more on JSON in a bit, but the
Postman tool makes it much easier to send REST API calls and see the results in a nicely formatted way.

You can download Postman here or use some other REST client/tool that you prefer:
https://www.getpostman.com/

You can see below how much nicer this looks than your browser:

Download it and play around with it for a bit. You’ll love it!

Whenever I’m working on RESTful APIs, I always test my API calls in Postman before moving them over
to UCSD. In Postman I can very quickly change my API call if I need to adjust the request and can also see
the JSON results and figure out the best way to parse the results in UCSD.

3.4 UCS Director

This guide was created while using UCSD 5.4.0.0. Several things to note as you are preparing to use
UCSD for RESTful integrations:

1. The UCSD orchestration node must be able to resolve the hostname that you are making the
integration with. Double check your UCSD settings to ensure DNS is properly setup. You can
jump onto the UCSD Orchestration node as root and ping your destination host to validate.

2. If you are connecting to an external host, make sure the proxy settings are set correctly in the
custom task. Because we are making an HTTP call using a custom task, even if your UCS Director
appliance is setup correctly with a proxy server, you will still need to set a proxy setting in the

https://www.getpostman.com/

5 | P a g e

custom task as shown in my task example.

3. If you are connecting to a host over HTTPS (which you should always do), you may encounter
some certificate issues if you are working with a self-signed certificate or a default out-of-the-
box certificate on your destination host. I have a section later on in this guide to show you how
to navigate this certificate issue. Although it’s troublesome sometimes to deal with certificates,
you never want to have usernames, passwords, auth cookies, or auth strings sent over the
network in clear text. Always make sure you are securing your connection!

3.5 JavaScript Reference

UCSD Custom Tasks are currently written in JavaScript, so knowing a little JavaScript definitely helps.
However, if you have any scripting or programming background whatsoever, you should get by just fine
with the help of a JavaScript reference. Don’t be ashamed to bookmark a site like W3Schools or
something similar (http://www.w3schools.com/js/). This site is very helpful if you are trying to figure out
arrays, loops, or variables in a custom task.

4 Method to the Madness
As you begin working on your custom task, it’s important to recognize there is a method to the madness
and it all starts with your approach. While there are a number of ways you can approach a custom task, I
typically pursue an approach like the following:

1. Find the API Calls
2. Test the API Calls in Postman
3. Create the UCSD Custom Task
4. Create the Custom Task Code
5. Parse the JSON Response
6. Troubleshooting/Testing Your Custom Task

I’ll go into a little more detail for each step below.

4.1 Find the API Calls

Before we get too far, we must understand what API calls we will be making from UCSD. To do that, we
must understand the RESTful API we will be integrating with. Unfortunately, that means we must also
sift through some API documentation for the system we are trying to integrate with. Sometimes the API
documentation is great and will lead us directly to the call we need, while other times we must stare at
the documentation a bit, try some different calls out in Postman, and figure out the correct call by trial
and error.

Let’s go ahead and open up our Open Library API Guide again
(https://openlibrary.org/dev/docs/restful_api). It should look something like this:

http://www.w3schools.com/js/
https://openlibrary.org/dev/docs/restful_api

6 | P a g e

 As we go through the guide, keep in mind our goal of trying to get a bunch of book information based
on the ISBN-10. After scanning through the guide, I find something that looks interesting… The Query
API. They give us the following example:
http://openlibrary.org/query.json?type=/type/edition&authors=/authors/OL1A&*=

This gives us a list of all the books by a given author (The author is not the author name, but the author
ID within the Open Library system). This is not exactly what we want, but if you browse through the
data, you find that the ISBN-10 is included in this data, so we are on the right track. We should be able
to find a way to filter our request based on the ISBN instead of the author.

This API guide does not give us any additional info on how to pull out certain information based on a
criteria, so we will have to play around with it for a bit in Postman to figure out exactly the API call we
want using the Query API. Lets’ take this Query API and plug it into Postman to see what we can pull out.

4.2 Testing in Postman

While you can play around with the API guide and the examples in your browser, it’s much easier and
more efficient to use Postman to test out your API calls and look at the return data.

Let’s plug in the example Query API example they have in the API Guide into Postman and see what we
can find:

http://openlibrary.org/query.json?type=/type/edition&authors=/authors/OL1A&*

7 | P a g e

After sifting through the data, we find that the isbn_10 is buried in the results. Excellent! Let’s see what
we can do to change the query around so we search by ISBN-10 instead of author. I’m going to change
the “authors=/authors/OL1A” section to “isbn_10=8174004130” and see what happens.

8 | P a g e

Awesome! It looks like it returned a book and all its information based on the ISBN! Looks like we are on
the right track. Note that the “type” parameter is required and the “*=” parameter indicates that we
want to return all the information for that book. This is outlined in the API Guide.

Let’s look up the ISBN of another book and make sure it works as expected. I looked up the ISBN of a
good Harry Potter book and found “0439136369”. Let’s plug that into Postman and see what happens.

9 | P a g e

Excellent! This is what we want. Let’s make sure we can get all the information we need. For our custom
task we want to grab the title, description, genre, publisher, and author. As we go through the results,
we find the title, description, genre, and publisher. However, the author information that is returned is
not the author name, but the author ID. It looks like we will need to make another API call to return the
author name based on the author ID.

As we go back to the Open Library API guide, we find another API call that looks up the author based on
the author ID. It looks like the following API call returns the author information for the author ID of
OL1A: http://openlibrary.org/authors/OL1A.json

Let’s plug that into Postman and change the author ID to the Harry Potter author, which is “OL23919A”.

http://openlibrary.org/authors/OL1A.json

10 | P a g e

Bingo! This API call will give us the author name based on the author ID, which is what we want.
So now we have two API calls that we will need to grab all the book information:

1. The first queries the Open Library database for a book with the given ISBN-10 and returns all the
book information we need except for the author name.
http://openlibrary.org/query.json?type=/type/edition&isbn_10=0439136369&*=

2. The second looks up the author information when given an author ID:
http://openlibrary.org/authors/OL23919A.json

Now that we have our API calls and have tested them out in Postman, let’s start building our UCS
Director Custom Task.

4.3 Create the UCS Director Custom Task

Now the fun begins with actually creating the task in UCS Director! First, let’s think about how many
tasks we want to create and what the inputs and outputs should be for each task. There are a couple
different ways you can approach this:

1. Create two tasks with one API call for each task
2. Create a single task with both API calls in the same task

I prefer going with option 2 because even though there are two separate API calls being performed, we
are logically just performing one task – retrieving book information from an ISBN. It is much simpler to
keep everything together in one task rather than trying to make sure all your tasks are in the correct

http://openlibrary.org/query.json?type=/type/edition&isbn_10=0439136369&*=
http://openlibrary.org/authors/OL23919A.json

11 | P a g e

order in your workflow and making your workflow larger than it needs to be. If there were two different
logical operations, then it would make sense to separate them into separate custom tasks.

Let’s create a new task and call it “Open Library Retrieve Book Details”.

Let’s create a single input called “isbn10”:

Now, let’s create the outputs called “bookName”, “bookTitle”, “bookDescription”, “bookGenres”,
“bookPublishers”, and “bookAuthors”.

12 | P a g e

Go ahead and breeze through the next few screens as we will leave the controller and script sections
blank for now.

4.4 Creating the Custom Task Code

When creating custom task code, I always prefer using a smart text editor like Notepad++ or similar
since we can use some basic JavaScript code checking and color coding. I would then copy and paste the
code into the custom task when I am ready.

4.4.1 Retrieve Name Function

Now let’s create a very simply function that just retrieves the book title given an ISBN-10. We will start
with this and expand from there.

function openlibraryRetrieveBookNameByIsbn10(isbn10) {

 logger.addInfo("function openlibraryRetrieveBookNameByIsbn10");

 // Setup HTTPS Connection

 var httpClient = new HttpClient();

 httpClient.getHostConfiguration().setHost("openlibrary.org", 443, "https");

 httpClient.getHostConfiguration().setProxy("proxy.test.com", 80);

 httpMethod = new GetMethod("/query.json?type=/type/edition&isbn_10="+isbn10+"&*=&limit=1");

 // Execute HTTPS and Return Results

 httpClient.executeMethod(httpMethod);

 statusCode = httpMethod.getStatusCode();

 response = httpMethod.getResponseBodyAsString();

 httpMethod.releaseConnection();

 // Check Response Code and Parse Results

 if (statusCode == 200){

 logger.addInfo("Response received: "+response);

 var jsonResponse = JSON.getJsonElement(response, null);

 // Make sure the query found a matching book.

 if (jsonResponse.size() == 0){
 logger.addError("Request Failed. The book search did not find any books with that ISBN-10.");

 ctxt.setFailed("Open Library book search failed.");

 ctxt.exit();

 }

 // Retrieve the Title from the JSON object

 var bookName = jsonResponse.get(0).get("title").getAsString();

 logger.addInfo("Book Name: " + bookName);

 return bookName;

 } else {

 // HTTP Request Failed

 logger.addError("Request Failed. HTTP response code: "+statusCode);

 logger.addError("Response = " + response);

13 | P a g e

 ctxt.setFailed("Open Library request failed.");

 ctxt.exit();

 }

} //function openlibraryRetrieveBookNameByIsbn10

Now let’s break this function down a little bit. This function accepts a parameter appropriately called
isbn10 and returns the title of the book.

First we setup the HTTP connection, set the host, set the proxy, and set the GET method. We will want
to substitute the GET query with the correct isbn10 that we feed into the function, so I added a variable
there.

Now let’s execute HTTPS call and return the response. The response will return either with an exit code
of 200 and the unparsed JSON results, or will return with some other code if there is an issue with the
response. Let’s capture the response and close the HTTP connection.

If the response code is 200, that means the request was successful and we should see some results if the
Open Library query actually returned anything. If the response code is anything other than 200, we want
to fail the task. To do this, we create an if/else statement that checks the response code.

If the code is 200, we will log the response for troubleshooting purposes so we can see the unparsed
JSON response. Then we will parse the JSON response looking for the title. I’ll touch on JSON parsing in a
later section. Once the JSON is parsed and we pull out the title, we can assign it to a variable and return
it to close out the function. If the JSON response resulted in no books, we will fail the task.

This task retrieves and returns a single item from the function, so is a pretty straightforward and easy
use case for returning results. The next function will return the book title as well, but will also return all
the other book information as properties in a JavaScript object.

4.4.2 Retrieve Details Function

Now let’s create a more complex function that returns all of the book details and converts all the details
to properties in a JavaScript object. This may be useful in organizing a large amount of information from
a REST call. This function accepts the isbn10 as a parameter and returns a single JavaScript object with
properties for title, description, genres, publishers, and author keys. In addition, there might be more
than one genre, publisher, or author key for each book, so the relevant properties might be an array of
values.

function openlibraryRetrieveBookDetailsByIsbn10(isbn10) {

 logger.addInfo("function openlibraryRetrieveBookDetailsByIsbn10");

 // Setup HTTPS Connection

 var httpClient = new HttpClient();

 httpClient.getHostConfiguration().setHost("openlibrary.org", 443, "https");

 httpClient.getHostConfiguration().setProxy("proxy.test.com", 80);

 httpMethod = new GetMethod("/query.json?type=/type/edition&isbn_10="+isbn10+"&*=&limit=1");

 // Execute HTTPS and Return Results

 httpClient.executeMethod(httpMethod);

 statusCode = httpMethod.getStatusCode();

 response = httpMethod.getResponseBodyAsString();

 httpMethod.releaseConnection();

 // Check Response Code and Parse Results

 if (statusCode == 200){

14 | P a g e

 logger.addInfo("Response received: "+response);

 var jsonResponse = JSON.getJsonElement(response, null);

 // Make sure the query found a matching book.

 if (jsonResponse.size() == 0){
 logger.addError("Request Failed. The book search did not find any books with that ISBN-10.");

 ctxt.setFailed("Open Library book search failed.");

 ctxt.exit();

 }

 // Retrieve the Details from the JSON object

 var bookDetails = {};

 // Book Title

 bookDetails.title = jsonResponse.get(0).get("title").getAsString();

 logger.addInfo("Book Title: " + bookDetails.title);

 // Book Description

 bookDetails.description = jsonResponse.get(0).get("description").getAsString();

 logger.addInfo("Book Description: " + bookDetails.description);

 // Book Genres - Might be multiple genres, so will create an array

 bookDetails.genres = [];

 for (var i = 0; i < jsonResponse.get(0).get("genres").size(); i++){

 bookDetails.genres.push(jsonResponse.get(0).get("genres").get(i).getAsString());

 }

 logger.addInfo("Book Genres: " + bookDetails.genres.toString());

 // Book Publishers - Might be multiple publishers, so will create an array

 bookDetails.publishers = [];

 for (var i = 0; i < jsonResponse.get(0).get("publishers").size(); i++){
 bookDetails.publishers.push(jsonResponse.get(0).get("publishers").get(i).getAsString());

 }

 logger.addInfo("Book Publishers: " + bookDetails.publishers.toString());

 // Author Keys - Might be multiple author keys, so will create an array

 bookDetails.authorKeys = [];

 for (var i = 0; i < jsonResponse.get(0).get("authors").size(); i++){
 bookDetails.authorKeys.push(jsonResponse.get(0).get("authors").get(i).get("key").getAsString());

 }

 logger.addInfo("Author Keys: " + bookDetails.authorKeys.toString());

 // Return the bookDetails Object

 return bookDetails;

 } else {

 // HTTP Request Failed

 logger.addError("Request Failed. HTTP response code: "+statusCode);

 logger.addError("Response = " + response);

 ctxt.setFailed("Open Library request failed.");

 ctxt.exit();

 }

} //function openlibraryRetrieveBookDetailsByIsbn10

Notice that this function is very similar to the first function, except how we parse the JSON and save the
results. We will create a “bookDetails” object with the properties title, description, genres, publishers,
and authorKeys. For the title and description properties, there can only ever be one item so we don’t
have to do anything special. For the genres, publishers, and authorKeys properties, there could be
multiple items, so we will need to create a for loop and iterate through all the items and push the item
to the array within the genres, publishers, and authorKeys properties. We then return the “bookDetails”
object to close out the function.

4.4.3 Retrieve Author Name Function

Now let’s create a function that accepts the author key as a parameter and returns the author’s name.
This function utilizes a different API call, but parses the response in the same way as the other functions.

15 | P a g e

function openlibraryRetrieveAuthorNameByAuthorKey(authorKey) {

 logger.addInfo("function openlibraryRetrieveAuthorNameByAuthorKey");

 // Setup HTTPS Connection

 var httpClient = new HttpClient();

 httpClient.getHostConfiguration().setHost("openlibrary.org", 443, "https");

 httpClient.getHostConfiguration().setProxy("proxy.test.com", 80);

 httpMethod = new GetMethod(authorKey+".json");

 // Execute HTTPS and Return Results

 httpClient.executeMethod(httpMethod);

 statusCode = httpMethod.getStatusCode();

 response = httpMethod.getResponseBodyAsString();

 httpMethod.releaseConnection();

 // Check Response Code and Parse Results

 if (statusCode == 200){

 logger.addInfo("Response received: "+response);

 var jsonResponse = JSON.getJsonElement(response, null);

 // Retrieve the author name from the JSON object

 var authorName = jsonResponse.get("name").getAsString();

 logger.addInfo("Author Name: " + authorName);

 return authorName;

 } else {

 // HTTP Request Failed

 logger.addError("Request Failed. HTTP response code: "+statusCode);

 logger.addError("Response = " + response);

 ctxt.setFailed("Open Library request failed.");

 }

} //function openlibraryRetrieveAuthorNameByAuthorKey

This function is pretty straightforward and closely resembles some of the other functions we already
discussed.

4.4.4 Main Function

This is where all the functions get tied together. Our main function will pull in the custom task input
“isbn10”, execute the necessary functions, and set the custom task outputs bookName, bookTitle,
bookDescription, bookGenres, bookPublishers, and bookAuthors.

// Task Inputs Mappings

var isbn10 = input.isbn10;

// Retrieve Book Name By ISBN-10 (Simple example of retrieving a single item)

var bookName = openlibraryRetrieveBookNameByIsbn10(isbn10);

// Retrieve Book Details By ISBN-10 (Retries the bookDetails object with the details stored in

properties)

var bookDetails = openlibraryRetrieveBookDetailsByIsbn10(isbn10);

// Retrieve Author Names by Author Keys (Because the above method only returned the author key -

not the name)

var authorNames = [];

for (var i = 0; i < bookDetails.authorKeys.length; i++){

 authorNames.push(openlibraryRetrieveAuthorNameByAuthorKey(bookDetails.authorKeys[i]));

}

// Task Output Mappings

output.bookName = bookName;

output.bookTitle = bookDetails.title;

output.bookDescription = bookDetails.description;

output.bookGenres = bookDetails.genres.toString();

output.bookPublishers = bookDetails.publishers.toString();

output.bookAuthors = authorNames.toString();

16 | P a g e

The book title from the “openlibraryRetrieveBookNameByIsbn10” function is saved into the bookName
variable. This variable is not necessarily needed as the book title is also returned from the bookDetails
object, but this variable and function just serves as an example on how to parse and handle single items.

The book details object from the “openlibraryRetrieveBookDetailsByIsbn10” function is saved into the
bookDetails variable. The properties of this object are then mapped to their respective outputs.
To retrieve the author names, the author keys are retrieved from the bookDetails object and sent as a
parameter to the “openlibraryRetrieveAuthorNameByAuthorKey” function. A for loop is utilized in the
event there is more than one author key. The author names are then mapped to an output.

4.5 JSON Parsing Fun

The JavaScript Object Notation(JSON) is a standard way of formatting data and is used often in REST or
other APIs. It’s fairly easy to use and parse in UCS Director custom tasks once you play around with it for
a little bit. Here is a quick summary of how JSON is formatted:

- All JSON data is formatted in name/value pairs like the following:
 “author”:”John Doe”

- Multiple pieces of data are separated by commas like the following:

“title”:”The Great JSON Book”,“author”:”John Doe”,”publisher”:”John Doe Publishing”

- JSON objects are held within curly braces:

// Book JSON Object

{

“title”:”The Great JSON Book”,

“author”:”John Doe”,

”publisher”:”John Doe Publishing”

}

- JSON arrays are held within square brackets:
// Multiple Book JSON Objects

[

 {

 “title”:”The Great JSON Book”,

 “author”:”John Doe”,

 ”publishers”:”John Doe Publishing”

 },

 {

 “title”:”The Great JSON Book: Part Two”,

 “author”:”John Doe”,

 ”publishers”:[”John Doe Publishing”,"Jane Doe Publishing"]

 }

}

So how do you navigate a JSON object and pull out information that you want? You start with the JSON
class that comes with UCS Director and parse the HTTP response as JSON:

response = httpMethod.getResponseBodyAsString();

var jsonResponse = JSON.getJsonElement(response, null);

Once the JSON is parsed as a JSON element you can navigate the JSON object using the get() method. To
navigate JSON arrays, you use the get() method with an array id (0,1,2,3,etc). To pull out a value from a
JSON object’s name/value pair, you use the get() method with the name of the value you would like to
retrieve.

17 | P a g e

If we wanted to pull out the first publisher of the first book in the JSON array example listed above, we
would use the following code:

 var publisher1 = jsonResponse.get(0).get("publishers").get(0).getAsString();

If we wanted to pull out the title of the second book, we would use the following code:

 var title2 = jsonResponse.get(1).get("title").getAsString();

If we wanted to retrieve all the publisher names in the second book, we can create a for loop and add
the names to an array like the following:

var publisherNames = [];

for (var i = 0; i < jsonResponse.get(1).get("publishers").size(); i++){

 publisherNames.push(jsonResponse.get(1).get("publishers").get(i).getAsString());

}

So when you are working with a JSON response from an API and you need to figure out how to parse it
and pull out the information you need, the best approach would be to make the API call in Postman,
look at the structure of the response, and figure out how to navigate the JSON objects and arrays using
the get() method.

For more information on JSON, you can look at some of the following sites:

- https://tools.ietf.org/html/rfc7159
- http://www.w3schools.com/json/
- https://en.wikipedia.org/wiki/JSON

4.6 Troubleshooting Your Custom Task

It’s very rare that you type out all your code in your favorite text editor, copy/paste it into the UCSD
custom task, run it, and it works perfectly. Usually you run into trouble with a typo, an invalid HTTP
request, or a JSON parsing misstep. For situations like this, I like to have two UCSD windows open – one
on the workflow tab so I can execute a test workflow with my custom task, and the second window on
the custom task tab so I can make any corrections or updates to my custom task without having to
navigate back and forth.

Once you get your UCSD windows situated, double check your custom task code and make sure you are
logging the HTTP response and status code. If the status code is not 200, you can look up the meaning of
the status code and read the response in the log for clues as to what went wrong. If there is a JSON
parsing error, usually your task will fail with an error about a null reference or something similar and will
point you to the line of code with the issue. Double-check your parsing and get() methods to make sure
you are navigating the JSON object correctly. If you are logging your HTTP response, you should be able
to compare your parsing code with the actual JSON response in the logs to make sure you are navigating
it correctly.

5 Dealing with SSL Certificates

https://tools.ietf.org/html/rfc7159
http://www.w3schools.com/json/
https://en.wikipedia.org/wiki/JSON

18 | P a g e

5.1 Potential SSL Certificate Issues

When dealing with integrations using HTTPS (you should never use just HTTP when dealing with
credentials or auth tokens), you may encounter some errors when attempting to connect. If your HTTPS
task fails and you see an error in the log that mentions “SSLHandshakeException” or something about a
certificate path, you are most likely running into a SSL certificate issue. This could be due to a number of
reasons:

1. You are integrating with an internal system that uses a self-signed certificate and that certificate
is not in the trusted certificate authority keystore in UCS Director.

2. You are integrating with an internal system that is using an invalid certificate. Some out-of-the-
box certificates for systems use an invalid self-signed certificate that has a default common
name instead of the server name as the common name. The common name attribute of the
certificate should be the hostname.

3. You are trying to connect to an internal system using a self-signed certificate and the hostname
you are connecting to is different than the certificate’s common name. You should always
connect to the hostname that is the same as the certificate’s common name attribute or you
may encounter a certificate error.

4. The system you are integrating with is not using a CA signed certificate from one of the more
common Certificate Authorities. UCSD comes pre-installed with the most common Certificate
Authorities. Typically, public internet facing systems would have a CA signed certificate.

In the event of an invalid certificate, you should go to the system and regenerate a valid self-signed
certificate. Once that is complete, you will need to add the certificate to the UCS Director Certificate
Authority keystore.

5.2 Adding Certificates to the UCSD Trusted CA Keystore

If your certificate authority or self-signed certificate is not already in the UCSD CA keystore and you are
encountering a certificate issue, you may need to add your certificate to the keystore. Here is the
process on how to do that:

1. Retrieve the certificate of the system you are integrating with. For self-signed certificates, you
can use your browser to save the certificate. The format should be Base-64 encoded for the

19 | P a g e

easiest import.

2. Copy the certificate file to the UCSD primary node’s /tmp directory
3. Login to the UCSD primary node as root
4. Take a backup of the cacerts file

cp /opt/bin/jre/lib/security/cacerts /cacerts.bck
5. Use the keytool to import the certificate

#cd /opt/bin/jre/bin

#./keytool -import -trustcacerts -alias <hostname> -file /tmp/certfile.cer –keystore

/opt/bin/jre/lib/security/cacerts
6. If prompted, the default password for the cacerts keystore file is “changeit” if you have not

already changed it.
7. Restart UCSD

6 Creating Your Own Custom Integrations
You have now completed your own custom RESTful integration with Open Library! Obviously, you may
not find much use for an integration with Open Library in your data center environment, but hopefully
this guide gave you a foundation to work from and a good template to use for your own custom RESTful
integration with an actual system in your data center. As a part of this guide, you will find attached the
completed Open Library custom task you can use as a starting point for your own integration. You can
modify, add, or remove pieces based on your integration needs.

Stay tuned for some additional guides around more complex RESTful integrations, SOAP integrations,
and advanced SSH integrations to round out your tool kit for integrating with various systems in the
datacenter. If you have some additional ideas or thoughts on some UCS Director guides that may be
useful, feel free to reach out and let me know!

