
Getting/Setting SIP Headers

© 2013 Cisco and/or its affiliates. All rights reserved. BRKCCT-3030 Cisco Public

•  Use of custom SIP headers increasingly requested as a mechanism for
passing data with calls to/from CVP

•  Pass user-data/context from third-party SIP PBX/ACD to CVP
•  Forward user-data with transfers from CVP to third-party platforms
•  Access additional signaling information such as Remote-Party-ID,

physical trunk information, privacy settings

Problem: CVP Comprehensive Model allows SIP header content to be
retrieved and added/modified but how is it done in CVP Standalone?

29

Getting and Setting SIP Headers
Use Case / Challenge

!
INVITE sip:90179017@10.52.200.50:5060 SIP/2.0!
Via: SIP/2.0/UDP 10.58.16.170:5060;x-ds0num="Basic Rate Interface 0/1/0 1:DS0";branch=z9hG4bK45751B21!
Remote-Party-ID: <sip:396298@10.58.16.170>;party=calling;screen=yes;privacy=off!
!

© 2013 Cisco and/or its affiliates. All rights reserved. BRKCCT-3030 Cisco Public 30

Getting SIP Headers
ICM Script / CVP Comprehensive Model

Configure CVP Call Server SIP settings via OAMP console to
specify which headers and parameters should be extracted
and passed up to ICM

Call.SIPHeader contains the headers configured to be passed to
ICM. In this example, it contains:

v:x-ds0num="Basic Rate Interface 0/1/0 1:DS0”

Call.SIPHeader contents are parsed to extract the right-hand-side
into a call variable.

(Vertical bar “|” character is the separator if multiple items extracted)

Documented	 in	 the	 CVP	 Configura4on	
and	 Administra4on	 Guide	

© 2013 Cisco and/or its affiliates. All rights reserved. BRKCCT-3030 Cisco Public 31

Setting SIP Headers
ICM Script / CVP Comprehensive Model

Set variable Call.SIPHeader with the required header modifications

•  Add, Modify, Remove operations
•  Vertical bar used as separator between multiple headers

Example here adds Cisco-Live custom header before CVP
transfers call

!
INVITE sip:1010123456133@10.58.16.170;transport=tcp SIP/2.0!
Via: SIP/2.0/TCP 10.58.16.180:5060;branch=z9hG4bKV0kC39vJ3IT8H+sGkW2wcg~~809!
To: <sip:1010123456133@10.58.16.170;transport=tcp>!
From: 396298 <sip:396298@10.58.16.180:5060>;tag=ds1f6be9!
Call-ID: 76918BCF560111E2811E001B0CFAA768-1357343908541127@10.58.16.180!
User-Agent: CVP 9.0 (1) Build-670!
Call-Info: <sip:10.58.16.170:5060>;purpose=x-cisco-origIP!
Date: Fri, 04 Jan 2013 23:58:25 GMT!
Cisco-Live: CVP Tips and Tricks Vol 2;location=London;session=BRKCCT-3030!
!

SIP INVITE on CVP transferred call leg showing the
Cisco-Live custom header added by the ICM script

The custom header has
been inserted

How can a CVP Call Studio
application read it?

© 2013 Cisco and/or its affiliates. All rights reserved. BRKCCT-3030 Cisco Public

getCiscoLiveHeader.vxml!
!
<?xml version="1.0"?>!
<vxml version="2.0”>!
!
 <form id="getheaders”>!
 <var name="CiscoLive" expr="session.com.cisco.proto_headers['Cisco-Live'].replace(new RegExp('=', 'g'),'::')"/>!
 <block>!
 <return namelist="CiscoLive"/>!
 </block>!
 </form>!
</vxml>!

•  SIP headers can be retrieved using the Cisco VoiceXML session variable
session.com.cisco.proto_headers

•  Invoke simple external VoiceXML using a Subdialog Invoke element
•  Return the header(s) from the subdialog
‒ but may still need more parsing if header has multiple parameters and …
‒ need to avoid problems with “=“ characters in the header parameters

32

Getting SIP Headers
CVP Standalone Model

Get Cisco-Live SIP header and return it as
CiscoLive parameter from the subdialog

© 2013 Cisco and/or its affiliates. All rights reserved. BRKCCT-3030 Cisco Public

CL13_SIPHeader,01/06/2013 02:39:15.580,CVP Subdialog Start_01,exit,done!
CL13_SIPHeader,01/06/2013 02:39:15.580,GetCiscoLiveHeader,enter,!
CL13_SIPHeader,01/06/2013 02:39:15.658,GetCiscoLiveHeader,data,CiscoLive,CVP Tips and Tricks Vol 2;location::London;session::BRKCCT-3030!
CL13_SIPHeader,01/06/2013 02:39:15.658,GetCiscoLiveHeader,exit,done!
CL13_SIPHeader,01/06/2013 02:39:15.658,PlayAudio,enter,!

CVP Call Studio Application

33

<subdialog name="subdialog" src="getCiscoLiveHeader.vxml”>!
 <filled>!
 <submit next="/CVP/Server" method="post" namelist="subdialog.CiscoLive audium_vxmlLog subdialog”/>!
 </filled>!
</subdialog>!

INVITE sip:1010123456133@10.58.16.170;transport=tcp SIP/2.0!
Via: SIP/2.0/TCP 10.58.16.180:5060;branch=z9hG4bKV0kC39vJ3IT8H+sGkW2wcg~~809!
To: <sip:1010123456133@10.58.16.170;transport=tcp>!
From: 396298 <sip:396298@10.58.16.180:5060>;tag=ds1f6be9!
Call-ID: 76918BCF560111E2811E001B0CFAA768-1357343908541127@10.58.16.180!
User-Agent: CVP 9.0 (1) Build-670!
Call-Info: <sip:10.58.16.170:5060>;purpose=x-cisco-origIP!
Date: Fri, 04 Jan 2013 23:58:25 GMT!
Cisco-Live: CVP Tips and Tricks Vol 2;location=London;session=BRKCCT-303!

Using Subdialog Invoke

Good candidate for a custom
element:
•  Add settings flexibility
•  Parse results into element/session data
•  Avoid using external VoiceXML files

© 2013 Cisco and/or its affiliates. All rights reserved. BRKCCT-3030 Cisco Public

Activity Log!
!
CL13_SIPHeader,01/06/2013 00:27:02.317,GetSIPHeaders,enter,!
CL13_SIPHeader,01/06/2013 00:27:02.348,GetSIPHeaders,data,Cisco-Live,CVP Tips and Tricks Vol 2!
CL13_SIPHeader,01/06/2013 00:27:02.348,GetSIPHeaders,data,Cisco-Live.location,London!
CL13_SIPHeader,01/06/2013 00:27:02.348,GetSIPHeaders,data,Cisco-Live.session,BRKCCT-3030!
CL13_SIPHeader,01/06/2013 00:27:02.348,GetSIPHeaders,data,User-Agent,CVP 9.0 (1) Build-670!
CL13_SIPHeader,01/06/2013 00:27:02.348,GetSIPHeaders,exit,done!

CVP Call Studio Application

34

Using Custom Element

Settings flexibility

•  Specify whether header info written to element or session data
•  Allow any number of headers to be retrieved

More elegant results parsing and storage

•  Separate data items for each parameter
•  Create element data with naming “headername.parameter”

© 2013 Cisco and/or its affiliates. All rights reserved. BRKCCT-3030 Cisco Public

•  Unfortunately no easy way to set SIP headers on VoiceXML transfers
•  Necessary to handoff the call to TCL from VoiceXML
•  An approach that enables a whole range of additional functionality, not

just adding SIP headers
•  Technique already used in several other places
‒ CVP Standalone Outbound: sends SIP INFO messages to the voice gateway to

make the call and return the outcome
‒ Courtesy Callback: to initiate the callback on the ingress gateway
‒ VideoConnect Element: transfers the caller to the video media server and listens

for caller-side DTMF while video is playing

•  Especially useful for adding custom transfer functionality as in the
VideoConnect case

Setting SIP Headers
CVP Standalone Model

© 2013 Cisco and/or its affiliates. All rights reserved. BRKCCT-3030 Cisco Public

Extract from VoiceXML generated by custom transfer element!
!
<object name="tclxfer" classid="builtin://com.cisco.callhandoff">!
 <param name="return" expr="true" valuetype="data" />!
 <param name="app-uri" expr="'builtin://cvp_tclxfer'" valuetype="data" />!
 <param name="arg-string" expr="'dest=4018 rna=30 cli=651963499 pause=0 tonedur=100 tonegap=100 disc=true
reco=true siphdr=(Account-Number:012345&Reason:Billing query)'" valuetype="data" />!
</object>!

CVP Call Studio Application

36

Using Custom Transfers

•  Custom transfer generates VoiceXML with <object> element to

perform call handoff to TCL application cvp_tclxfer
•  Data from element settings is passed to the TCL application via

the arg-string param
•  The TCL application retains control of the call during the transfer

while the VoiceXML session is temporarily suspended

© 2013 Cisco and/or its affiliates. All rights reserved. BRKCCT-3030 Cisco Public

CVP Call Studio Application
Using Custom Transfers
 !

!
CVP_TCLXFER, assumed control of call with argument: <dest=4018 rna=30 cli=651963499 pause=0 tonedur=100 tonegap=100 disc=true reco=true
siphdr=(Account-Number:012345&Reason:Billing query)>!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
CVP_TCLXFER, event ev_proceeding on call leg 25268 received in state DIALING!
CVP_TCLXFER, event ev_alert on call leg 25268 received in state DIALING!
CVP_TCLXFER, event ev_connected on call leg 25268 received in state DIALING!
CVP_TCLXFER, event ev_setup_done on call leg 25263 25268 received in state DIALING!
CVP_TCLXFER, caller (leg 25263) connected to 4018 (leg 25268)!
!
CVP_TCLXFER, event ev_disconnected on call leg 25268 received in state SETUP_DONE!
CVP_TCLXFER, far-end disconnected, returning caller to VoiceXML!
CVP_TCLXFER, event ev_destroy_done received in state FAR_END_DISC!
CVP_TCLXFER, handoff return with argstring <far_end_disconnect>!
CVP_TCLXFER, event ev_disconnect_done on call leg 25268 received in state FAR_END_DISC!
CVP_TCLXFER, exiting!

INVITE sip:4018@10.58.16.175:5060 SIP/2.0!
Via: SIP/2.0/UDP 10.58.16.170:5060;branch=z9hG4bK461E64D!
From: <sip:651963499@10.58.16.170>;tag=C5AB8A80-F76!
To: <sip:4018@10.58.16.175>!
Date: Sun, 06 Jan 2013 18:05:10 GMT!
Call-ID: 721DC9AF-576211E2-BD42CA6D-8EF6E38D@10.58.16.170!
User-Agent: Cisco-SIPGateway/IOS-12.x!
Reason: Billing query!
Account-Number: 012345!
Call-Info: <sip:10.58.16.170:5060>;purpose=X-cisco-forkingcapable!
App-Info: <10.58.16.180:8000:8443>!
Cisco-Live: CVP Tips and Tricks Vol 2;location=London;session=BRKCCT-3030!

TCL transfer application is passed parameters from Call Studio script

Transfer leg is set up and SIP INVITE sent including custom SIP headers

Called party answers and transfer is connected

Called party hangs-up and call control is returned to VoiceXML

© 2013 Cisco and/or its affiliates. All rights reserved. BRKCCT-3030 Cisco Public

CVP Call Studio Application

38

Other Custom Transfer Capability

•  Whisper transfer with explicit called party accept/reject
•  Send DTMF to called party on answer
•  Receive DTMF from called party
•  End transfer on DTMF pattern match
•  Configurable calling party number
•  Configurable display name / remote party ID
•  Call parking while other party connects-in (effectively reverse

direction transfer)

Also allows caller hangup during transfer to be
caught and presented as an exit state to the
application script

